Brown Deer
Technology

COPRTHR-2
API Reference

This document describes the COPRTHR-2 API for host and device code. The host API provides an
interface to the coprocessor allowing control and the offload of parallel work to the coprocessor.
The device API supports the development of parallel algorithms executed on the coprocessor
device.

The API reference is organized as follows. The basic host API using an ordered command queue
for device operations is described in Section 1. Support for a Pthreads interface extended to
coprocessors is described in Section 1.6. The basic coprocessor device API used for programming
the threads executed on the coprocessor is described in Section 2. The threaded MPI coprocessor
device API supports a parallel programming model for the coprocessor sing standard MPI syntax
and is described in Section 3.

Verbatim copying and distribution of this entire document is permitted in any medium, provided this notice is preserved.

Disclaimer: this documentation is provided for informational purposes only and is subject to change.

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629)

Brown Deer

Tec h no l 0 g y COPRTHR-2 API Reference

Contents

R (07 2 OO 3
1.1 DevVice INTHAlIZATION cuuueeereeeeeeeeseesseessecesesesseessessees e sssess s ssss s s s s ss bbb s b 3
1.2 Device Memory Management With UVA SUPPOTT ... ssesssessesssessssessessssesssesseesans 3
1.3 Executing Coprocessor Device KeIMEls.......eeneiniinesessessesssessssssssssssssssssssssssssssssssssssssans 5
1.4 EVENt SYNCRIONIZAtION ..ttt sesse s es s ssss st s e bbb bbbt 6
RS O 1/ ToY 10 101 o) =T) o U TP 6

2 PthIeads fOr COPIOCESSOTS. ..ieuieeeereessesseesseeetssessesss et ssssse s ssse s s bbb et s s bbb s bbbt s 7
2.1 THIreads .. sssssssssssssssssssssssens Error! Bookmark not defined.

3 COPTOCESSOT DEVICE APL ...ttt s s s s e e s 9
3.1 TRIeads And COTES...ieeersesssssessesssss s ssssssssssssssssss s sssssss s ssss s s s s s st sesans 9
3.2 MemOry ManageIMENt ... s s 10
3.3 0500015 PP 11
7 SN 4 ol 01) 4 U /2= 11 (0) o VAPPSO 11
3.5 FUNCHON ATTIDULES ...ttt sss bbb s s s s 12
3.6 User-defined HOSt CallS ...ccnreeeiereeiseeisseesesssecssesesssssss s sssessssssssssssesssssssss s sssesssssssssssssssasssesens 13

4 TRIEAAEA MPL......oeeeeeeeeee ettt e s s R R bR 15

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 2

Brown Deer
Technology COPRTHR-2 API Reference

1 Host API

The COPRTHR-2 host API provides an interface for accessing a coprocessor device from the host
platform including device memory allocation similar to malloc() and a stream model for non-
blocking asynchronous device operations.

1.1 Device Initialization

Synopsis:

#include <coprthr.h>

int coprthr_dopen(const char* path, int flags)
int coprthr_dclose(int dd)

Link with -lcoprthr

Functions:

int coprthr_dopen(const char* path, int flags)

Open a coprocessor device identified by path and return a device descriptor that may be used
in subsequent operations on the device. Here path may be a literal path to a device special file
or one of the pre-defined macros for known supported devices. Currently supported devices
include: COPRTHR_DEVICE_E32 for the Epiphany-IIl coprocessor. The flags argument
controls the behavior of the opened device.

The COPRTHR_O_NONBLOCK flag causes the call to return with an error if the device is
temporarily unavailable. The flag COPRTHR_O_EXCLUSIVE causes the call to return with an
error if exclusive access to the device could not be established.

The flags COPRTHR_O_STREAM and COPRTHR_O_THREAD specify the mode of operation in
which the coprocessor device should be opened. Finally, the flag COPRTHR_O_DEFAULT may
be used to select the default flags configured by the installation.

int coprthr_dclose(int dd)

Close the coprocessor devices associated with the device descriptor dd that was returned
from the coprthr_dopen() call.

1.2 Device Memory Management with UVA support

The following calls are used for memory allocation and moving data on the coprocessor device. If
Unified Virtual Address-space (UVA) support is enabled the device pointer returned from
coprthr_devmemptr() can be dereferenced directly without any specialized calls for accessing
the allocated device memory.

Synopsis:

#include <coprthr.h>

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 3

Brown Deer
Technology

COPRTHR-2 API Reference

coprthr_mem_t coprthr_dmalloc(int dd, size_t size, int flags)

coprthr_mem_t coprthr_drealloc(int dd, coprthr_mem_t mem, size t size, int flags)
void coprthr_dfree(int dd, coprthr_mem_t mem)

void* coprth_devmemptr(coprthr_mem_t mem)

coprthr_event_t coprthr_dread(int dd, coprthr_mem_t mem, size t offset, void* ptr,
size_t len, int flags)
coprthr_event_t coprthr_dwrite(int dd, coprthr_mem_t mem, size_t offset,
void* ptr, size_ t len, int flags)
coprthr_event_t coprthr_dcopy(int dd, coprthr_mem_t mem_src, size_t offset_src,
coprthr_mem_t mem_dst, size_t offset _dst, size_t len, int flags)

Link with -lcoprthr
Functions:

coprthr_mem_t coprthr_dmalloc(int dd, size t size, int flags)

Allocate memory associated with the coprocessor device specified by the device descriptor
dd. The allocator is similar to conventional malloc () extended to a coprocessor device. The
coprthr_dmalloc() call returns an opaque memory object of type coprthr_mem_t that
may be used in subsequent calls.

coprthr_mem_t coprthr_drealloc(int dd, coprthr_mem_t mem, size t size,
int flags)

Resize an existing memory allocation associated with the coprocessor device specified by the
device descriptor dd. Behavior is similar to conventional realloc() extended to a
coprocessor device. The coprthr_drealloc() call returns an opaque memory object of
type coprthr_mem_t that may be used in subsequent calls.

void coprthr_dfree(int dd, coprthr_mem_t mem)
Free an existing memory allocation associated with the coprocessor device specified by the
device descriptor dd.

void* coprthr_devmemptr(coprthr_mem_t mem)

Return the device pointer associated with the opaque memory object. This is the address of
the memory allocation as seen by the coprocessor device. With UVA suport this same address
can be used on the host platform.

coprthr_event_t coprthr_dread(int dd, coprthr_mem_t mem, size t offset,
void* ptr, size_t len, int flags)

Read len bytes from the coprocessor device memory allocation mem to the host platform
memory buffer ptr. The offset argument is the offset in bytes into the coprocessor device
memory allocation; the use of non-zero offsets may or may not be supported by a given
device.

Note: with UVA support enabled this call may be replaced with a conventional memcpy ().

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 4

Brown Deer
Technology COPRTHR-2 API Reference

coprthr_event_t coprthr_dwrite(int dd, coprthr_mem_t mem, size t offset,

void* ptr, size_t len, int flags)

Write len bytes to the coprocessor device memory allocation mem from the host platform
memory buffer ptr. The offset argument is the offset in bytes into the coprocessor device
memory allocation; the use of non-zero offsets may or may not be supported by a given

device.
Note: with UVA support enabled this call may be replaced with a conventional memcpy ().
coprthr_event_t coprthr_dcopy(int dd, coprthr_mem_t mem_src,

size_t offset_src, coprthr_mem_t mem_dst, size_t offset_dst,
size_t len, int flags)

Copy the len bytes to the coprocessor device memory allocation mem from the host platform
memory buffer ptr. The offset arguments are the offset in bytes into the respective
coprocessor device memory allocations; the use of non-zero offsets may or may not be

supported by a given device.

Note: with UVA support enabled this call may be replaced with a conventional memcpy ().

1.3 Executing Threads on a Coprocessor Device
The following calls are used for executing threads on a coprocessor device.

Synopsis:
#include <coprthr.h>

coprthr_event_t coprthr_dexec(int dd, unsigned int nthr, coprthr_kernel t krn,
void* pargs, int flags)

coprthr_event_t coprthr_dexecv(int dd, char* path, char* const argv[], int flags)

Link with -lcoprthr
Functions:

coprthr_event_t coprthr_dexec(int dd, unsigned int nthr,
coprthr_kernel_t krn, void* pargs, int flags)

Execute the specified kernel on the coprocessor device specified by the device descriptor dd

using nthr threads with Pthread-style argument passing.

coprthr_event_t coprthr_dexecv(int dd, char* path, char* const argv[],
int flags)

Load and execute the coprocessor kernel specified by path on the coprocessor device
specified by the device descriptor dd with argv-style argument passing. This call is a direct
extension of the Linux command execv. The number of threads used on the coprocessor is
determined by the environment variable COPRTHR_DEVICE_NTHR which can be controlled
using the run-time shell command coprsh.

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 5

Brown Deer
Technology

COPRTHR-2 API Reference

See Also: coprthr_ncreate(), coprthr _mpiexec(), coprsh.

1.4 Event Synchronization

The following calls are used for synchronization of operations between the host platform and a
coprocessor device.

Synopsis:

#include <coprthr.h>

int coprthr_dwaitev(int dd, coprthr_event_t ev)
int coprthr_dwait(int dd)

Link with -lcoprthr

Functions:

int coprthr_dwaitev(int dd, coprthr_event t ev)

Block until the operation associated with the event ev has completed on the specified by the
device descriptor dd.

int coprthr_dwait(int dd)

Block until all operations scheduled on the coprocessor device specified by the device
descriptor dd have completed.

1.5 Cross-compilation

The following calls will be used for run-time cross-compilation. At present this feature is not
enabled. However the coprthr_getsym() call must be used to identify an entry point into a
compiled coprocessor binary.

Synopsis:
#tinclude <coprthr.h>
#include <coprthr_cc.h>

coprthr_program_t coprthr_dcompile(int dd, char* src, size_t len, char* opt,
char** log)

coprthr_sym_t coprthr_getsym(coprthr_program_t prg, const char* symbol)
Link with -lcoprthr -lcoprthrcc

Functions:

coprthr_program t coprthr_dcompile(int dd, char* src, size t len,
char* opt, char** log)

Cross-compile src for the coprocessor device specified by the device descriptor dd.

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 6

Brown Deer
Technology

COPRTHR-2 API Reference

coprthr_sym_t coprthr_getsym(coprthr_program_t prg, const char* symbol)

Get the named symbol in the program binary. A common use of this call is to get the entry
point or kernel from a compiled binary targeting a coprocessor device.

1.6 Pthreads for Coprocessors
This section describes the extension of Pthreads to coprocessors supported by COPRTHR-2.

By design, the API for the extension of Pthreads to coprocessors mirrors that of conventional
POSIX threads calls in every possible way. Therefore the syntax and behavior of most calls does
not differ from that of the corresponding Pthreads call.

The mechanism for maintaining near transparency with Pthreads is to attach the device descriptor
to the conventional Pthreads attribute used in the creation of Pthread execution objects. The
coprthr_attr_setdevice() callis introduced for this purpose.

The coprthr_attr_setinit() call is also added to allow control over what happens when a
thread is created. By convention, Pthreads implicitly launches threads at the time of creation
without an explicit “execute” call This behavior may not be ideal, so the flag
COPRTHR_A_CREATE_SUSPEND requests that the thread be suspended upon creation. A
scheduling call is then used to "execute" the thread at a later time. Conventional behavior (execute
upon creation) can be requested with the flag COPRTHR_A_CREATE_EXECUTE which is the default
behavior.

Note: Pthread mutex and conditional variable support will be enabled in a future software release.

Synopsis:

#include <coprthr.h>

#include <coprthr_thread.h>

int coprthr_attr_init(coprthr_td_attr_t* attr)

int coprthr_attr_destroy(coprthr_td_attr_t* attr)

int coprthr_attr_setdetachstate(coprthr_td_attr_t* attr, int state)
int coprthr_attr_setdevice(coprthr_td_attr_t* attr, int dd)

int coprthr_attr_setinit(coprthr_td_attr_t* attr, int action)

int coprthr_create(coprthr_td_t* td, coprthr_td_attr_t* attr, coprthr_sym_t thr,
void* arg)

int coprthr_ncreate(unsigned int nthr, coprthr_td_t* td,
coprthr_td_attr_t* attr, coprthr_sym t thrfunc, void* arg)
int coprthr_join(coprthr_td_t td, void** val)

Link with -lcoprthr

Functions:

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 7

Brown Deer
Te C h no l 0 g y COPRTHR-2 API Reference
int coprthr_attr_init(coprthr_td_attr_t* attr)

Initialize thread attributes object.

int coprthr_attr_destroy(coprthr_td_attr_t* attr)
Destroy thread attributes object.

int coprthr_attr_setdetachstate(coprthr_td_attr_t* attr, int state)
Set detach state attribute in thread attributes object.

int coprthr_attr_setdevice(coprthr_td_attr_t* attr, int dd)

Set device descriptor in the thread attributes object.

int coprthr_attr_setinit(coprthr_td_attr_t* attr, int action)
Set initialization behavior in the thread attributes object. Allowable actions include
COPRTHR_A_CREATE_SUSPEND and COPRTHR_A CREATE_EXECUTE.

int coprthr_create(coprthr_td t* td, coprthr_td attr_t* attr,
coprthr_sym_t thr, void* arg)

Create a new thread.

int coprthr_ncreate(unsigned int nthr, coprthr_td t* td,
coprthr_td_attr_t* attr, coprthr_sym_t thrfunc, void* arg)

Create nthr new threads.

int coprthr_join(coprthr_td_t td, void** val)

Join with a terminated thread.

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 8

Brown Deer
Technology

COPRTHR-2 API Reference

2 Coprocessor Device API

The coprocessor device API is described below and may be used for developing code for execution
on the coprocessor device. Compilation requires the use of the coprcc compiler front-end, which
is described in COPRTHR-2 Development Tools.

2.1 Threads and Cores

The calls below that may be used for extracting information about threads and the cores they are
executing on.

Synopsis:

#include <coprthr.h>

unsigned int coprthr_get_num_threads(void)

int coprthr_get_thread_id(void)

unsigned int coprthr_corenum(void)

unsigned int coprthr_coremap(unsigned int n)

unsigned int coprthr_threadmap(unsigned int n)

Link with -lcoprthr

Functions:

unsigned int coprthr_get_num_threads(void)

Gets the number of threads in the thread group to which the executing thread belongs.
int coprthr_get_thread_id(void)

Returns the thread ID for the executing thread.

unsigned int coprthr_corenum(void)

Returns the physical core number associated with the core executing the current thread.

unsigned int coprthr_coremap(unsigned int tid)

Returns the core number mapped to the thread ID tid.

unsigned int coprthr_threadmap(unsigned int n)

Returns the thread ID mapped to the core number n.

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 9

Brown Deer
Technology COPRTHR-2 API Reference

2.2 Memory Management
The calls below are used for allocating memory and copying data.

Synopsis:

#include <coprthr.h>

int coprthr_tls_brk(void* addr)

void* coprthr_tls_sbrk(intptr_t increment)

coprthr2_event_t coprthr_memcopy_align(void* dst, void* src, size_t n, int flags)

coprthr2_event_t coprthr_memcopy2d_align(void* dst, void* src, size_t w_dst,
size_t w_src, size t w, size_t h, int flags)

void coprthr_wait(coprthr2_event_t ev)

Link with -lcoprthr
Functions:

int coprthr_tls_brk(void* addr)
Sets the end of the thread local data segment (USRCORE) to the value specified by addr.

void* coprthr_tls_sbrk(intptr_t increment)

Increments the thread local data segment (USRCORE) by increment bytes. Calling with an
increment of 0 can be used to find the current break point.

Below is an example showing how these calls can be used to allocate and free thread local
data using the conventional brk/sbrk method:

void* memfree = coprthr_tls sbrk(@); // get current break point
void* buffer = coprthr_tls sbrk(256); // allocate buffer of 256 bytes

coprthr_tls_brk(memfree); // free allocated buffer
coprthr2_event_t coprthr_memcopy_align(void* dst, void* src, size_t n,
int flags)
Copy n bytes from memory src to dst.
coprthr2_event_t coprthr_memcopy2d_align(void* dst, void* src, size t
w_dst, size_t w_src, size_t w, size_t h, int flags)
Copy a two-dimensional memory area of dimensions w and h from src to dst which may have
different leading dimensions w_src and w_dst, respectively.
void coprthr_wait(coprthr2 event t ev)

Wait for the asynchronous event ev to complete. This is used to wait completion of
asynchronous memory movement using DMA engines.

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 10

Brown Deer
Technology COPRTHR-2 API Reference

2.3 Timers

This section describes coprocessor device timers that can be used for measuring the elapsed time
of execution on a single core. These are down-counters so that the returned timer values will be
decreasing.

Synopsis:

#include <coprthr.h>

void coprthr_ctimer_reset(void)
unsigned int coprthr_ctimer_get(void)

Link with -1lcoprthr
Functions:

void coprthr_ctimer_reset(void)

Reset the ctimer.

unsigned int coprthr_ctimer_get(void)

Return the current value of the ctimer.

Example:

unsigned int to, ti;
coprthr_ctimer_reset();

t@ = coprthr_ctimer_get();
// ... code to be timed...
t1 = coprthr_ctimer_get();
unsigned int elapsed = t0 - t1; // elapsed time in clock cycles

2.4 Synchronization
The calls below are used for inter-thread synchronization with barriers and mutexes.

Synopsis:

#include <coprthr.h>

void coprthr_barrier(int flags)

void coprthr_mutex_init(unsigned int* mtx, int flags)
void coprthr_mutex_unlock(unsigned int* mtx)

int coprthr_mutex_testlock(unsigned int* mtx)

int coprthr_mutex_testlock_self(unsigned int* mtx,)
int coprthr_mutex_trylock(unsigned int* mtx)

int coprthr_mutex_trylock_self(unsigned int* mtx)

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 11

Brown Deer
Technology COPRTHR-2 API Reference

void coprthr_mutex_lock(unsigned int* mtx)
void coprthr_mutex_lock_self(unsigned int* mtx)

Link with -1lcoprthr
Functions:

void coprthr_barrier(int flags)

Block until all threads reach barrier.
void coprthr_mutex_init(unsigned int* mtx, int flags)
Initialize mutex.

void coprthr_mutex_unlock(unsigned int* mtx)

Unlock mutex.

int coprthr_mutex_testlock(unsigned int* mtx)

Test if remote mutex can be acquired.

int coprthr_mutex_testlock_self(unsigned int* mtx)

Test if local mutex can be acquired.

int coprthr_mutex_trylock(unsigned int* mtx)

Attempt to acquire remote mutex.

int coprthr_mutex_trylock_self(unsigned int* mtx)

Attempt to acquire local mutex.

void coprthr_mutex_lock(unsigned int* mtx)

Block until remote mutex is acquired.

void coprthr_mutex_lock_self(unsigned int* mtx)

Block until local mutex is acquired.

2.5 Function Attributes

This section describes attributes that may be used to control placement of code within the
coprocessor device binary.

Synopsis:
#include <coprthr.h>
__entry

__usrcore_call

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 12

Brown Deer
Technology

COPRTHR-2 API Reference

__usrmem_call

Attributes:

__entry

Mark the entry point for thread execution. In the example below thread execution would
begin with the function my_thread():

void __entry my_ thread(void* parg)

{
int tid = coprthr_get_thread_id();
printf(“tid=%d\n”’,tid);

}

__usrcore_call
Mark function for placement in USRCORE segment. This allows performance-critical code to
be placed for fast execution. This is the default placement.

__usrmem_call

Mark function for placement in USRMEM segment. This allows code that is not critical for
performance to be placed in global DRAM to save core-local memory in the USRCORE
segment.

2.6 User-defined Host Calls

The macro USRCALL() is actually part of the host API however it is described here due to its
relationship with the coprocessor device API. COPRTHR-2 supports interoperability between the
coprocessor device and the host Linux platform. Many calls are supported by default. It is also
possible to declare a host call in a user application to be exported to the coprocessor device. This
is done with the USRCALL () macro and is best illustrated by example.

In this example the host call foo() will be exported to the coprocessor device. First, the user-
defined host call foo() must be defined and marked for export to the coprocessor within the host
applicaiton. Then this call may be declared and executed from the coprocessor device.

Host code:

int foo(int a, int b);
USRCALL (fo0,1);

int foo(int a, int b) { return a+b; }

Coprocessor device code:

int foo(int a, int b);

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 13

Brown Deer
Technology

COPRTHR-2 API Reference

int main() {
int a,b,c;

c = foo(a,b)

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629)

14

Brown Deer
Technology

COPRTHR-2 API Reference

3 Threaded MPI

In this section the coprocessor device API supporting the threaded MPI parallel programming
model is described. Note: Defining the macro COPRTHR_MPI_COMPAT prior to including the
coprthr_mpi.h header will provide the conventional MPI aliases for all threaded MPI calls.

At present only a subset of the MPI calls are documented here.

Synopsis:

#include <coprthr.h>

#include <coprthr_mpi.h>

coprthr_mpi_comm_t MPI_COMM_THREAD

int coprthr_mpi_init(_coprthr_mpi_comm* comm, size_t bufsize)
int coprthr_mpi_finalize(void)

int coprthr_mpi_comm_size(coprthr_mpi_comm_t comm, int* size)
int coprthr_mpi_comm_rank(coprthr_mpi_comm_t comm, int* rank)

int coprthr_mpi_cart_create(coprthr_mpi_comm_t comm_old, int ndims, const int
dims[], const int periods[], int reorder, coprthr_mpi_comm_t* comm_cart)

int coprthr_mpi_comm_free(coprthr_mpi_comm_t* comm)

int coprthr_mpi_cart_coords(coprthr_mpi_comm_t comm, int rank, int maxdims, int*
coords)

int coprthr_mpi_cart_shift(coprthr_mpi_comm_t comm, int dir, int disp,
int* rank_source, int* rank_dest)

int coprthr_mpi_sendrecv_replace(void* buf, int count,
coprthr_mpi_datatype_t datatype, int dest, int sendtag, int source,
int recvtag, coprthr_mpi_comm_t comm, coprthr_mpi_status_t* status)

Link with -1coprthr_mpi

Optional: Compile with -DCOPRTHR_MPI_COMPAT

Functions:
int coprthr_mpi_init(_coprthr_mpi_comm* comm, size_t bufsize)

Initial MPI execution environment.

int coprthr_mpi_finalize(void)
Terminate MPI execution environment.
int coprthr_mpi_comm_size(coprthr_mpi comm_t comm, int* size)

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 15

Brown Deer
Technology

COPRTHR-2 API Reference

Return number of threads associated with the communicator.

int coprthr_mpi_comm_rank(coprthr_mpi_comm_t comm, int* rank)

Return rank of the calling thread in the communicator.

int coprthr_mpi_cart_create(coprthr_mpi_comm_t comm_old, int ndims, const int
dims[], const int periods[], int reorder, coprthr_mpi comm_t* comm_cart)

Create new communicator with Cartesian topology.

int coprthr_mpi_comm_free(coprthr_mpi_comm_t* comm)

Free a communicator.

int coprthr_mpi_cart_coords(coprthr_mpi_comm_t comm, int rank, int maxdims,
int* coords)

Determines thread coordinates in Cartesian topology for the given rank.

int coprthr_mpi_cart_shift(coprthr_mpi_comm_t comm, int dir, int disp,
int* rank_source, int* rank_dest)

Returns shifted source and destination ranks for given shift direction and amount.

int coprthr_mpi_sendrecv_replace(void* buf, int count,
coprthr_mpi_datatype_t datatype, int dest, int sendtag, int source,
int recvtag, coprthr_mpi_comm_t comm, coprthr_mpi_status_t* status)

Send and receive message using a single buffer.

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629)

16

