

Copyright © 2016 Brown Deer Technology, LLC

COPRTHR-2
Development Tools

This document describes the COPRTHR-2 development tools. Section 0 describes the compiler

front-end coprcc used for compiling executable code for the coprocessor device. Section 2

describes the binary analysis tool coprcc-info used to extract information about a compiled binary.

Section 3 describes the specialized shell command coprsh used to control the environment of the

COPRTHR-2 run-time. Section 4 describes the interactive core debugger coprcc-db.

Verbatim copying and distribution of this entire document is permitted in any medium, provided this notice is preserved.

Disclaimer: this documentation is provided for informational purposes only and is subject to change.

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 2

Contents
1 Compiling Coprocessor Binaries: coprcc ... 3

1.1 Options Reference ... 3

1.2 Compilation Model .. 3

1.2.1 Host-Executable Coprocessor Binaries ... 4

1.2.2 Offload-executable Coprocessor Binaries .. 4

2 Analyzing Compiled Binaries: coprcc-info .. 6

2.1 Options Reference ... 6

3 Run-Time Shell Command: coprsh .. 11

3.1 Option Reference ... 11

4 Integrated Core Debugger: coprcc-db .. 13

4.1 Command Reference .. 13

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 3

1 Compiling Coprocessor Binaries: coprcc

With COPRTHR-2 compiling executable code for a coprocessor device is accomplished with the

compiler front-end coprcc. The primary purpose of coprcc is to provide the correct compilation

environment and drive the COPRTHR-2 compilation model using the native compiler for the

coprocessor. The default native compiler is GCC which may be overridden by the environment

variable COPRTHR_CC or using the command-line flag -mcc.

1.1 Options Reference

coprcc [options] infile... [-o outfile]

Options:

--extract

Extract coprocessor binary from host program.

-fdynamic-calls

Enable use of dynamic calls.

-fhost

Generate host-executable program with embedded coprocessor binary for implicit offload.
The default is to generate a coprocessor binary for explicit offload.

--info

Apply coprcc-info -b to final output file to generate brief summary information.

--info-more

Apply coprcc-info -j to final output file to generate detailed summary information.

-k, --keep

Keep intermediate files.

-v

Show details of compilation.

1.2 Compilation Model

COPRTHR-2 provides several variations to the compilation model suitable for different application

development scenarios:

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 4

 Compile source to a host-executable coprocessor binary (a.out)

 Compile source to a offload-executable coprocessor binary (e.out)

 Compile source to a re-linkable object file

1.2.1 Host-Executable Coprocessor Binaries

For simple applications coprcc is able to generate a host-executable program for executing

application code on the coprocessor. This is accomplished using the –fhost command-line flag

for coprcc. This compilation model requires that a conventional main routine is provided, and

which will be used as the entry point of the executed program on the coprocessor device. The

coprocessor executable binary is linked into a host-executable program that will automatically

perform the offload of execution to the coprocessor device.

As an example, for a conventional C main routine:

] coprcc –fhost main.c

The result will be an a.out file that can be executed directly on the host platform:

] ./a.out

The embedded coprocessor binary will be automatically offloaded. This compilation model

requires no explicit host code and is the simplest way to target the coprocessor.

1.2.2 Offload-executable Coprocessor Binaries

The default behavior of coprcc is to generate coprocessor binaries that require explicit host code

to off-load work to the coprocessor device. Two off-load call models are supported. The first is a

Pthreads style interface which requires the programmer to mark the entry point for the

coprocessor program using the __entry qualifier:

void __entry my_thread(void* parg) {
 ...
}

Assuming the code is in my_thread.c the code is compiled for the coprocessor using:

] coprcc my_thread.c

The result will be an e.out file that can be explicitly loaded into a host program for offload to the

coprocessor:

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 5

int main() {
 ...
 coprthr_
 coprthr_program_t prg = coprthr_cc_read_bin("./e.out",0);
 coprthr_sym_t thr = coprthr_getsym(prg,"my_thread");
 ...
}

Here the C main program would be compiled for the host using the native compiler, e.g., GCC.

1.2.3 Re-linkable coprocessor binaries

As with the native compiler, coprcc supports generating re-linkable object files. As an example,

assume that foo.c and bar.c contain routines needed by the main thread routine in my_thread.c.

Compilation may be broken up into steps as expected:

] coprcc –c foo.c
] coprcc –c bar.c
] coprcc my_thread.c foo.o bar.o

Here foo.o and bar.o will be linked into the final e.out coprocessor binary.

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 6

2 Analyzing Compiled Binaries: coprcc-info

The layout in memory of COPRTHR-2 coprocessor binaries for the Epiphany architecture is

segmented to address specific requirements for fast execution and the efficient use core-local

memory, with many features being provided to the application developer for precise control over

the compiled binaries. The coprcc-info tool can be used to analyze COPRTHR-2 coprocessor

binaries to support diagnostic and optimization work. The tool is similar to the binutils nm and

readelf commands, but provides detailed information specific to the COPRTHR-2 compilation and

execution models.

As an example, below is summary information for the matrix-matrix multiply kernel obtained with

the –b command line option:

dar@parallella3:$ coprcc-info -b cannon_tfunc.e32
file: cannon_tfunc.e32
architecture: Epiphany
ELF type: EXEC (loadable binary)
local memory:
 total size 32 KB
 syscore 1024 bytes (3.1%)
 user code 9504 bytes (29.0%)
 fragmentation 220 bytes (2.1%)
 free memory 22112 bytes (67.5%)

An additional reference example using coprcc-info to analyze the matrix-matrix multiple kernel is

provided at the end of this section.

2.1 Options Reference

coprcc-info [options] file

Options:

--base file

Set base file for delta calculation.

-b, --brief

Display summary information only.

-B

Do not display summary information.

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 7

-d

Display section for each symbol.

-D

Display dynamic calls only.

-g, --group

Group symbols by package.

-h, --help

Show usage.

-H

Display host calls only.

-j

Display segment headers.

-l, --large bytes

Highlight symbols larger than bytes in size.

-L

Highlight symbols larger than 256 bytes.

-p, --package name

Display symbols from specified named package only.

-P, --no-package

Do not display symbols from packages.

-s, --section name

Display symbols from specified named section only.

-S, --segment segnum

Display symbols from specified segment number only. Special keywords may be used in place
of segment number (IVT, CONFIG, SYSCORE, USRCORE, SYSMEM, USRCORE).

--version

Print version information.

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 8

2.2 Reference example for the output from coprcc-info
The output from applying coprcc-info to the matrix-matrix multiply kernel is shown below. The

output is annotated to allow the identification of various fields and symbols to describe the

coprocessor binary layout and elements. These are described below.

(1) Summary information showing the byte allocation in core-local memory. The size of ‘user

code’ is for the USRCORE segment only. Fragmentation is a measure of padding or other

bytes that are unusable for instructions or data due to alignment requirements.

(2) This is a segment header inserted using the –j command line option. The format is (in order):

segment number, starting address, ending address, size in bytes, and segment name.

(3) This is a symbol within the SYSCORE segment, specifically, the main syscore routine. The

format for symbol information is starting address, size in byes, padding in bytes, symbol type,

and symbol name. For symbol type, F = function and O = data object. A ‘~’ preceding the ‘F’

indicates that the symbol is an alias. Here _syscore is marked with an ‘F’ to indicate that it is a

function.

(4) An example of a data objected with symbol type marked as ‘O’.

(5) This is the USRCORE segment where critical user code is placed.

(6) This is an example of a symbol alias marked as ‘~F’. In this case the symbol is _MPI_Comm_rank

which is an alias for _coprthr_mpi_comm_rank.

(7) The symbol __local_mem_base is the end of the USRCORE segment, in this case core-local

address 0x27d0. The memory between this address approximately 0x7000 represents core-

local memory available to the application for memory allocation. This measure is

approximate since the stack will grow downward from 0x8000 and care must be taken to

avoid collisions.

(8) This is the USRMEM segment in off-chip DRAM where more memory is available but access is

significantly slower.

dar@parallella3:$ coprcc-info -j cannon_tfunc.e32
file: cannon_tfunc.e32
architecture: Epiphany
ELF type: EXEC (loadable binary)
local memory:
 total size 32 KB
 syscore 1024 bytes (3.1%)
 user code 9504 bytes (29.0%)
 fragmentation 220 bytes (2.1%)
 free memory 22112 bytes (67.5%)
Symbols:
segment 0: 0x0000-0x0004 4 (IVT)
 0x0000 4 F _start
segment 1: 0x0000-0x0000 0 (CONFIG)

(1)

(2)

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 9

segment 2: 0x0058-0x03e0 904 (SYSCORE)
 0x0064 28 F init
 0x0080 132 12 F _epiphany_start
 0x0110 374 2 F _syscore
 0x0288 188 F ___sys_barrier
 0x0344 20 F fini
 0x0358 16 O ___coprthr_barrier_state
 0x0368 8 O ___coprthr_thread
 0x0370 40 O ___coprthr_proc
 0x0398 16 O _sys_barrier_state
 0x03a8 8 O _sys_thread
 0x03b0 40 O _sys_proc
 0x03d8 4 4 O _core_timer_0
 0x03e0 F __syscore_high
segment 3: 0x0400-0x2920 9504 (USRCORE)
 0x0400 4 4 F __init_tab
 0x0408 1416 F _my_thread
 0x0990 1092 4 F _MatrixMultiply
 0x0dd8 78 F ___syslog
 0x0e22 4 2 F ___wrap___syslog
 0x0e28 30 2 F _readi
 0x0e48 30 2 F _read_h
 0x0e68 342 2 F ___coprthr_mpi_init
 0x0fc0 52 4 F ___coprthr_mpi_finalize
 0x0ff8 40 F _coprthr_mpi_comm_rank
 0x0ff8 ~F _MPI_Comm_rank
 0x1020 40 F _coprthr_mpi_comm_size
 0x1020 ~F _MPI_Comm_size
 0x1048 64 F ___e_irq_set
 0x1088 30 2 F _readi
 0x10a8 30 2 F _read_h
 0x10c8 652 4 F _coprthr_mpi_cart_create
 0x10c8 ~F _MPI_Cart_create
 0x1358 146 6 F _coprthr_mpi_cart_coords
 0x1358 ~F _MPI_Cart_coords
 0x13f0 ~F _MPI_Cart_shift
 0x13f0 754 6 F _coprthr_mpi_cart_shift
 0x16e8 30 2 F _readi
 0x1708 30 2 F _read_h
 0x1728 1610 6 F _coprthr_mpi_sendrecv_replace
 0x1728 ~F _MPI_Sendrecv_replace
 0x1d78 30 2 F _readi
 0x1d98 30 2 F _read_h
 0x1db8 30 2 F _xxx_readi
 0x1dd8 40 F _coprthr_tls_brk
 0x1e00 68 4 F _coprthr_tls_sbrk
 0x1e48 218 6 F ___coprthr_dma_setup_xfer
 0x1f28 244 4 F ___coprthr_dma_setup_xfer2d
 0x2020 396 4 F ___coprthr2_memcopy_align
 0x21b0 422 2 F ___coprthr2_memcopy2d_align
 0x2358 38 2 F ___coprthr2_wait
 0x2380 52 4 F _coprthr_ctimer_reset
 0x23b8 46 2 F _coprthr_ctimer_get
 0x23e8 212 4 F ___coprthr_barrier

(3)

(5)

(6)

(4)

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 10

 0x24c0 6 2 F ___coprthr_mutex_set
 0x24c8 8 F ___coprthr_mutex_unlock
 0x24c8 ~F ___coprthr_mutex_init
 0x24d0 8 F ___coprthr_mutex_testlock
 0x24d8 16 F ___coprthr_mutex_testlock_self
 0x24e8 16 F ___coprthr_mutex_trylock
 0x24f8 20 F ___coprthr_mutex_trylock_self
 0x250c 18 2 F ___coprthr_mutex_lock
 0x2520 26 2 F ___coprthr_mutex_lock_self
 0x253c 14 2 F ___coprthr_dma_start_0
 0x254c 14 2 F ___coprthr_dma_start_1
 0x255c 14 2 F ___coprthr_dma_wait_0
 0x256c 14 2 F ___coprthr_dma_wait_1
 0x257c 390 2 F ___divsi3
 0x2704 8 F __exit
 0x270c 8 F ___esyscall_phalt
 0x2714 126 2 F ___esyscall
 0x2794 4 O ___mem_free
 0x2798 F __bss_start
 0x2798 8 F _edata
 0x27a0 24 O ___dma1_desc
 0x27b8 24 O ___dma0_desc
 0x27d0 F _end
 0x27d0 334 F __thread_init
 0x27d0 F __local_mem_base
segment 4: 0x0000-0x0000 0 (SYSMEM)
segment 5: 0x8e002000-0x8e002ca8 3240 (USRMEM)
 0x8e002000 58 2 F _exit
 0x8e00203c 4 O __global_impure_ptr
 0x8e002040 206 2 F _memcpy
 0x8e002110 308 4 F ___call_exitprocs
 0x8e002248 4 4 O __impure_ptr
 0x8e002250 1096 O _impure_data
 0x8e002698 334 2 F ___modsi3
 0x8e0027e8 326 2 F ___init_core_local_data
 0x8e002930 878 F _MatrixMatrixMultiply
segment 6: 0x0000-0x0000 0

(8)

(7)

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 11

3 Run-Time Shell Command: coprsh

The run-time shell command coprsh is used for setting up the COPRTHR-2 run-time environment.

It may be used for the immediate execution of an application using the coprocessor, or to create a

shell with a fixed environment defined. The coprsh command may also be used to query the

current environment for information impacting the COPRTHR-2 run-time. An example of the most

common use is to set the number of threads that are to be used on the coprocessor and to control

the verbosity of debug message reporting.

Consider the example of the program my_program.x that we would like to execute using 8 threads

on the coprocessor. This is accomplished with:

] ./coprsh –np 8 -- ./my_program.x

If we want to limit debug messages to those identified as at least as critical as an error (but

excluding warnings), this can be accomplished by modifying the options:

] ./coprsh –np 8 –r err -- ./my_program.x

In some cases we would like to create a shell with the COPRTHR-2 environment
already setup in order to avoid having to continually specify it. This can be
accomplished with:

] ./coprsh –np 8 –r err -- bash
] ./my_program.x

In the above example, my_program.x will be executed using eight (8) threads and with debug

messages less critical than err suppressed, for each time a program is executed within the bash

shell that was created.

3.1 Option Reference

coprsh [options] [-- command [command-options]]

Options:

-h, --help

Show this usage information.

-nc, -np num

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 12

Set number of coprocessor threads.

-r level

Set clmesg report level where level may be a number from 0-7 or one of the following
aliases: emerg(0), alert(1), crit(2), err(3), warning(4), notice(5),
info(6), debug(7) .

-v

Show what is being done.

--version

Show version information.

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 13

4 Integrated Core Debugger: coprcc-db

The integrated core debugger coprcc-db allows interactive debugging for many-core coprocessors.

With the run-time core debugger enabled, at any time during the execution of code on the

coprocessor (especially useful when your code is hanging due to a bug), hitting ctrl-z will cause the

terminal to drop-down into the core debugger coprcc-db. This will provide a shell-like command-

line that can be used to query the state of the coprocessor cores. The core debugger is designed to

support many-core coprocessors and provides a simple prefix notation for applying any command

to any number of selected cores. The use of a shell-based debugger extends its functionality to

include any shell commands for a flexible and familiar debugging environment. As an example, the

output of any debug command may be piped through UNIX commands like grep and also

redirected to an output file for subsequent analysis.

4.1 Command Reference

Command structure:

 [core-select-prefix] command [options] [| command ...]

Commands:

continue

Continue execution from halt.

coredump

Dump core local memory to file(s)

help

Print this help information.

mem start[,end]

Display memory content from address start to address end. If end address is omitted a
single word is displayed.

quit

Quit the debugger.

 COPRTHR-2 Development Tools

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629) 14

reg [regname,...]

Display contents of selected registers specified as comma separated list. Available registers
are: config, status, pc, imask, ipend.

sh <shell-cmd>

Execute (only) an ordinary shell command.

state

Display core execution state.

sym [symbol]

Display value of symbol. If no symbol is specified then all available symbols are displayed.

Syntax and conventions:

 Core select prefix. All commands may be prefixed to apply the command to one or more

specific coprocessor cores. A comma separated list of core numbers or ranges of core

numbers may be used. In the example below, the status register for cores 7,10,11,12, and

15 will be reported:

(coprdb) 7,10-12,15 reg status

 Pipes. The output of a command may be piped to a shell command. Useful shell

commands for post-processing the output of a coprdb command are grep, awk, and tee.

Any shell command including customer programs can be used. In the example below, the

output of the reg command being filtered using grep to print only the results for cores

showing an exception status, and then more is used to Pipe command to shell example:

(coprdb) reg pc,status | grep -e except | more

 Redirects. The output of a command may be redirected to a file like any shell command.

In the example below, the memory contents over a specific range is being written to an

output file:

(coprdb) mem 0x400,0x500 > logfile.txt

 Multiple commands. Multiple commands may be combined using a semicolon. In the

example below, the PC register values would be reported forst followed by the STATUS

register values:

 (coprdb) reg pc; reg status

