

Copyright © 2016 Brown Deer Technology, LLC

Document revision b (20160629)

COPRTHR-2
Overview

This document provides an overview of the COPRTHR-2 Software. Additional information is

available in the following supporting documentation:

 COPRTHR-2: Development Tools provides information about development tools.

 COPRTHR-2: API Reference provides information about the supported APIs.

 COPRTHR-2: Software Development Guide provides detailed information about software

development using COPRTHR-2.

Verbatim copying and distribution of this entire document is permitted in any medium, provided this notice is preserved.

Disclaimer: this documentation is provided for informational purposes only and is subject to change.

 COPRTHR-2 Overview

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 2

Contents
1 Overview ... 3

1.1 History .. 3

1.2 Components ... 3

1.3 Features ... 3

1.4 syscore: persistent proto-OS supporting fast coprocessor code execution............................... 4

1.5 coprcc: cross-compiler front-end for Epiphany .. 5

1.6 coprcc-info: tool for detailed analysis of coprocessor binaries .. 5

1.7 coprcc-db: run-time integrated Epiphany core debugger .. 6

 COPRTHR-2 Overview

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 3

1 Overview

1.1 History

The CO-PRocessing THReads® SDK version 1.6 provides programming support for heterogeneous

computing including support for the Epiphany architecture. COPRTHR® version 2 represents a

significant redesign across the software stack with a focus on enabling greater performance and

control for the application developer targeting scalable RISC array processors such as the

Epiphany architecture.

The design and development of COPRTHR-2 has evolved from the internal code development

project designated Anthem which focused on addressing the observed issues encountered in

programming the Epiphany Parallella platform, and was strongly influenced by the work on

threaded MPI.

The overarching focus guiding the Anthem project was enabling greater performance and

providing the programmer with greater control over the compilation of Epiphany binaries,

especially, in the area of managing the limited core-local memory that must be shared between

instructions and data. Addressing these issues required a redesign of very low-level code in the

software stack. As a result, COPRTHR-2 is not backwards compatible with many features of

COPRTHR-1. However, the significant components of COPRTHR have thus far been migrated

forward, including the COPRTHR API for Epiphany and support for threaded MPI.

1.2 Components

At the time of release the components of COPRTHR-2 include:

 syscore: a persistent proto-OS supporting fast coprocessor code execution

 coprcc: cross-compiler front-end for Epiphany

 coprcc-info: tool for detailed interrogation coprocessor binaries

 coprcc-db: run-time integrated coprocessor core debugger

 libcoprthr: support for the COPRTHR coprocessor API

 libcoprthr_mpi: support for threaded MPI

1.3 Features

 COPRTHR-2 Overview

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 4

Highlights of the COPRTHR-2 features include:

 Precise control over code placement in the compilation model

 Support for host-offload and direct execution run-time models

 Unified virtual address-space (UVA) between host and coprocessor

 Host call interoperability: make Linux host calls directly from coprocessor

 Threaded MPI programming model provides a familiar parallel programming API

 Support for ARL OpenSHMEM API

 Integrated coprocessor debugging tool for improved visibility of operation

 Experimental support for dynamic calls using an instruction cache

1.4 syscore: persistent proto-OS supporting fast coprocessor code execution

A significant development in COPRTHR-2 is the segmentation of system and user code within

Epiphany binaries. This segmentation allows a bootable persistent proto-OS kernel to execute on

the coprocessor cores in order to reduce the latency incurred in the launch of user application

code. We describe this model as "hot loading" the Epiphany application binary. The design

enables extremely fast response times between the host platform and the Epiphany coprocessor.

Previous approaches used for Epiphany suffered from very high overhead in the startup of an

application kernel. The development of syscore was challenging since the core-local memory in

the Epiphany architecture is a precious commodity.

The nominal memory layout of an Epiphany binary under COPRTHR-2 is shown below:

 Core-local memory (0x0000-0x80000):
 0x0000-0x0058 Reserved
 0x0058-0x0398 SYSCORE
 0x0400- USRCORE
 0x7f80-0x8000 Reserved

 Shared global memory
 0x8e000000-0x8e002000 SYSMEM
 0x8e002000- USRMEM
 0x8e100000-0x8f000000 Shared Heap

When the Epiphany coprocessor is opened for use it is booted into syscore which causes the

execution of a persistent generic kernel compiled into the memory segments SYSCORE and

SYSMEM. This memory is not available to the programmer. Since core-local memory is precious

and must be utilized judiciously, syscore is designed to be compact in size while still providing

essential functionality. Programmers using COPRTHR-2 will find the ability to create much smaller

 COPRTHR-2 Overview

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 5

program binaries and have greater control over their program layout when compared with

COPRTHR-1 or the typical use of the eSDK directly.

The advantages brought by syscore are seen immediately with the loading of an application

binary. A distributed tree loader is provided that reduces application kernel launch time by

almost 30x over COPRTHR-1 or the eSDK. Not only is the loader fast, it is also scalable, and the

design will exhibit logarithmic scaling with increased core count. Support for persistent threads,

which was a very common feature request for COPRTHR-1, is now trivially supported. Greater

host-coprocessor interoperability is also supported with the ability to make Linux host calls

directly from the Epiphany cores using an RPC mechanism tightly integrated into syscore. The

indispensable debugging tool printf() is now trivial and available to programmers along with most

of the Linux system calls and calls provided by stdio. As an example, it is now possible to access

the host file-system from the Epiphany cores.

1.5 coprcc: cross-compiler front-end for Epiphany

Under COPRTHR-1 a compiler front-end called clcc was used to compile Epiphany binaries and

supported both a traditional compiler workflow or just-in-time compilation. This tool is

deprecated under COPRTHR-2 and replaced with the compiler front-end called coprcc. The

replacement was motivated by the goal of providing more flexibility in the compiler workflows

that programmers may require. As a result, coprcc will behave much more like the native

Epiphany compiler e-gcc insofar as it accepts all of the default compilation flags, and can be

provided C source (.c), assembly (.s), or precompiled re-linkable object (.o) files as part of the

compilation workflow. This allows greater flexibility in compilation steps and the conventional

use of partial compilation steps. Support is provided for compiling coprocessor binaries suitable

for explicit off-load from a host program. A new feature is support for compiling host executables

that will implicitly off-load an embedded coprocessor binary for execution on the coprocessor

device. This new feature is exemplified by the ability to compile a simple “hello, world” program

which may be executed directly on any number of coprocessor cores.

1.6 coprcc-info: tool for detailed analysis of coprocessor binaries

One of the design objectives for COPRTHR-2 was enabling greater control over the layout of

compiled coprocessor binaries, including the precise placement of executable code. In support of

these capabilities, the tool coprcc-info is provided for extracting detailed information about the

layout of a coprocessor binary. The tool is similar to the common nm and readelf commands

provided by binutils. However, coprcc-info it is tailored to the COPRTHR-2 binaries generated by

coprcc and provides information that has no equivalent in binutils.

 COPRTHR-2 Overview

Copyright © 2016 Brown Deer Technology, LLC
Document revision b (20160629) 6

1.7 coprcc-db: run-time integrated Epiphany core debugger

One of the most challenging issues encountered in using the Epiphany coprocessor was having to

execute code "blindly" without any visibility into what might be happening (good or bad) as

threads executed on the cores. Debugging was a challenge since the normal practice of using

printf() statements for debugging was not properly supported. Although COPRTHR-2 provides

interoperability with the Linux host and supports printf() trivially now, the need for an integrated

debugger still exists. The coprcc-db tool was developed for this purpose.

With the run-time core debugger enabled, at any time during the execution of code on the

Epiphany coprocessor (especially useful when your code is hanging due to a bug) hitting ctrl-z will

cause the terminal to drop-down into the core debugger coprcc-db. This will provide a shell-like

command-line that can be used to query the state of the coprocessor cores. The core debugger is

designed to support many-core coprocessors and provides a simple prefix notation for applying

any command to any number of selected cores. The use of a shell-based debugger extends its

functionality to include any shell commands for a flexible and familiar debugging environment. As

an example, the output of any debug command may be piped through UNIX commands like grep

and also redirected to an output file for subsequent analysis.

