Computational Challenges in the Use of Emerging Many-Core Architectures for DoD Applications

David Richie
Brown Deer Technology

August 17th, 2009
Outline

- Many-core processors
 - Challenges
 - Motivation
 - Obvious benefit: performance
 - Not so obvious benefit: mobile HPC
 - OpenCL: problem solved, more problems
- Future Developments
Future Parallelism of HPC Architectures

- Multi-node ~ 1,000 nodes
- Distributed - MPI

- Challenges in productivity
- Very high level parallel languages

- Multi-core ~ 10 cores
- SMP - OpenMP

- Moderate challenges
- Not so different from SMP nodes

- Many-core ~ 1,000 cores
- Stream, SIMD, SIMT - OpenCL

- New level of parallelism
- Significant Challenges
Many-core: Massive Chip-Level Parallelism

- DoD DSRC major-center-scale Linux cluster
 - Scheduled operation through 2011
 - 4,400 cores, 26.4 TFLOPS (double precision)
 - Cost: multi-million dollar acquisition

- GP-GPU Workstation “Supercomputer” (paper spec)
 - Can be built today w/existing COTS parts (for gamers)
 - 11,200 cores, 16-20 TFLOPS (single-precision)
 - cost: < $10,000 (plus effort and ingenuity)

- Many-core processors can provide as many cores per compute node as there are computer nodes

- Represents a complete inversion of the HPC paradigm familiar to HPC software developers
Many-core (GPU) Architectures

- For years HPC asked for a chip with “lots of FP units”
 - Who needs register renaming, out-of-order execution? ...
- Here they are – 800 FP units (example shown)
- Read the fine print:
 - Most of the complexity of a “core” has been removed
 - Highly constrained execution model
 - Limited number of registers
 - Constrained memory architecture
 - Thread aggregation (SIMT model)
- **Question:** how dependent have HPC software developers become on the capabilities of a modern core architecture, e.g., Nehalem or Istanbul?
 - ... port your code to a GPU and find out
Many-core vs. Multi-core

- Many-core is not the logical evolution of multi-core
 - Issue is not number of cores, rather the cores themselves
- Distinction is between ‘heavy-weight” cores and “light-weight” cores
- Will likely generate debate similar to RISC vs. CISC
 - Better to have 32 capable cores, or 1600 weak cores?
- Distinction is invariant, silicon has finite dimensions
- What about “medium-weight” cores (not-so-many-core)?
 - These will be thrown into the debate also
Many-core Evolution

- GPU (ancient times)
 - Non-IEEE compliant FP units
 - OpenGL, DirectX, Shader languages, ...
- GP-GPU (now)
 - IEEE compliant FP units (sort of)
 - RV790 (FireStream), GT200 (Tesla)
 - CUDA, Brook
- Many-core (drop “graphics”, improve legitimacy) (near future)
 - RV870 (Evergreen), GT300, Larrabee (manycore or multi-core+vector?)
 - OpenCL(?)
- Is HPC driving the evolution? Of course not, HPC is a post-roadmap add-on
 - Consumer market is driving the technology
 - “Data parallel” closest driver related to HPC
 - Understanding this provides a guide for what to (not) expect
 - HPC community successfully exploited x86_64, same deal
The Many-core + Multi-core Problem

- Co-processors are back, along with the unsolved problems, and entirely new problems
- Data and control must be orchestrated between distributed resources – cores + memory
- Problem differs significantly from recent distributed HPC challenges
 - Very serious latency and bandwidth constraints
 - Problems: locking, memory consistency, asynchronous operations, concurrency
 - Doesn't the operating system take care of this? ... No, not anymore – see the OpenCL spec
Challenges

- Software is the greatest challenge – always is
- Theoretical challenge – the programming model
 - Many-core offers worse case of many long-standing problems
 - Co-processors, distributed shared memory, thread synchronization, ...
 - Many-core adds third tier to parallelism requiring new API
 - What should/will the SDK look like? Automation or expression?
 - A programming model is a contract with the programmer
 - What are the likely terms for many-core? agreeable?
- Practical challenges
 - Quality of compilers and vendor-provided run-time
 - Code portability, compliance, new compilation models
 - Software developers will find the “many cores” primitive
(Outline)

- Many-core processors
- Challenges: software (anyone surprised)

Motivation

- **Obvious benefit: performance**
 - Not so obvious benefit: mobile HPC
- OpenCL: problem solved, more problems
- Future Developments
Investigation of Application Kernels

- Objectives
 - Evaluate representative computational kernels important in HPC
 - Grids, finite-differencing, overlap integrals, particles
 - Understand GPU architecture, performance and optimisations
 - Understand how to design GPU-optimised stream applications

- Approach
 - Develop “clean” test codes, not full applications
 - Easy to instrument and modify
 - Exception is LAMMPS, a real production code from DOE/Sandia
 - Exercise was to investigate treatment of a “real code”
 - Brings complexity, e.g., data structures not GPU-friendly
Seismic: 3D VS-FDTD

- Seismic Simulation of Velocity-Stress Wave Propagation
 - Important algorithm for seismic forward modeling techniques
 - Used for iterative refinement and validation of sub-surface geological models

\[
\frac{\partial \mathbf{v}_i}{\partial t} = b \left(\frac{\partial \sigma_{ii}}{\partial x_i} + \frac{\partial \sigma_{ij}}{\partial x_j} + \frac{\partial \sigma_{ik}}{\partial x_k} + f_i \right)
\]

\[
\frac{\partial \sigma_{ii}}{\partial t} = (\lambda + 2\mu) \frac{\partial \mathbf{v}_i}{\partial x_i} + \lambda \left(\frac{\partial \mathbf{v}_i}{\partial x_j} + \frac{\partial \mathbf{v}_j}{\partial x_k} \right)
\]

\[
\frac{\partial \sigma_{ij}}{\partial t} = \lambda \left(\frac{\partial \mathbf{v}_i}{\partial x_j} + \frac{\partial \mathbf{v}_j}{\partial x_i} \right)
\]
Seismic: 3D VS-FDTD
GPU Acceleration

Initialization

Stream Read

Update Velocity Field

Update Stress Field

Apply Excitation

Stream Write

Finalization

N_step / N_burst

N_burst
Seismic: 3D VS-FDTD: Benchmarks

GPU vs. CPU: Time per Million Points

- Performing many iterations in between data transfer mitigates PCIe bottleneck
- 31x speedup for largest grid
Quantum Chemistry: Two-Electron Integrals

- One of the most common approaches in quantum chemical modeling employs gaussian basis sets to represent the electronic orbitals of the system.

- A computationally costly component of these calculations involves the evaluation of two-electron integrals.

\[
(\mu \nu | \lambda \tau) = \int \int dr_1 dr_2 \phi_\mu(r_1) \phi_\nu(r_2) \frac{1}{r_{12}} \phi_\lambda(r_1) \phi_\tau(r_2)
\]

\[
\phi_\mu(r) \sim \sum_k d_k g(\alpha_k, r) \\
g(\alpha_k, r) \sim \exp(-\alpha_k r^2)
\]

- For a gaussian basis, evaluation of two-electron integrals reduces to summation over closed-form expression (Boys, 1949).

- Features of expression required to be evaluated:
 - Certain pair quantities can be factored and pre-calculated.
 - Expression contains +, -, *, /, sqrt(), exp(), erf()
Quantum Chemistry: Two-Electron Integrals

GPU Acceleration

- Initialization
- Stream Read
- Pair Pre-Calc
- Calc 2-e Integrals
- Stream Write
- Finalization
Quantum Chemistry: Two-Electron Integrals
Implementation Details

- Consider simple test case: 3D lattice of Hydrogen atoms using a STO-6G basis (1s only)
- Evaluation of two-electron integrals reduces to many summations over $36 \times 36 = 1296$ terms
- Use of float4 SIMD ops requires inner loop of only 36×9 iterations
- Use of double2 SIMD ops requires inner loop of only 36×18 iterations
- Most difficult part of implementation involved the erf() for which no hardware instr exists
- Most CPU-based codes use a piecewise approximation due to Cody (1968?)
 - Good for CPUs, reduces FLOPS at expense of branching
 - Terrible for GPUs, branching is a performance killer
- Used approximation by Hastings (1949?) valid for entire domain (with a few tricks)
 - Quality of the erf() approximation warrants further investigation
- Benchmarks performed for various lattice dimensions (Nx,Ny,Nz) leading to wide span in terms of number of integrals evaluated
Quantum Chemistry: Two-Electron Integrals

GPU vs. CPU: Time per Million 2-e Integrals

<table>
<thead>
<tr>
<th>Number of Integrals</th>
<th>Time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2E+04</td>
<td>3.2E+07</td>
</tr>
<tr>
<td>6.9E+05</td>
<td>2.0E+07</td>
</tr>
<tr>
<td>2.2E+06</td>
<td>1.0E+07</td>
</tr>
<tr>
<td>6.4E+06</td>
<td>1.0E+06</td>
</tr>
<tr>
<td>2.0E+07</td>
<td>1.0E+05</td>
</tr>
<tr>
<td>3.2E+07</td>
<td>1.0E+04</td>
</tr>
</tbody>
</table>

- Various implementations:
 - float(f)/double(d), Nested-Loop (NL), Fused-Loop (FL), Unrolled (U)
- Results are complex, reveal a lot about the architecture and run-time API
- Best float implementation: fully unrolled loop (9 iterations)
- Best double implementation: fused-loop w/partial (2 iteration) unroll
Quantum Chemistry: Two-Electron Integrals

GPU vs. CPU: Time per Million 2-e Integrals

- Large numbers of integrals: latency and GPU setup time is completely amortized
- Small numbers of integrals: repeating calculation (s2) reveals GPU setup/compute time
 - Entire calculation is repeated including complete data transfer
 - s2 time more reflective of real codes (integrals re-evaluate repeatedly)
Quantum Chemistry: Two-Electron Integrals

STO-6G(1s) 4x4x4

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>GPU Setup</th>
<th>GPU Compute</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATI/4870/single</td>
<td>0.968 sec</td>
<td>0.678 sec</td>
<td>0.290 sec</td>
</tr>
<tr>
<td>AMD/9950(3GHz)/single</td>
<td>236.242 sec</td>
<td>244x</td>
<td>814x</td>
</tr>
<tr>
<td>ATI/4870/double</td>
<td>2.728 sec</td>
<td>0.241 sec</td>
<td>2.487 sec</td>
</tr>
<tr>
<td>AMD/9950(3GHz)/double</td>
<td>198.749 sec</td>
<td>72x</td>
<td>80x</td>
</tr>
<tr>
<td>Nvidia/8800GTX/single*</td>
<td>1.123 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD/175/GAMESS*</td>
<td>90.6 sec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Ufimtsev and Martinez

- Large number of integral limit (~10 million)
 - SP: 814x speedup
 - DP: 80x speedup
- CPU implementation definitely not optimized
- GPU performance/speedup will nevertheless be substantial
Molecular Dynamics: LAMMPS

- Fundamental technique for molecular modeling
- Simulate motion of particles subject to inter-particle forces
- LAMMPS is open-source MD code from DOE/Sandia
- Goal: accelerate inter-particle force calculation

- Rhodopsin Protein Benchmark (most difficult)
- Details: All-atom rhodopsin protein in solvated lipid bilayer with CHARMM force field, long-range Coulomb via PPPM, SHAKE constraints, system contains counter-ions and a reduced amount of water
- Benchmark: 32,000 atoms for 100 timesteps
Molecular Dynamics: LAMMPS
GPU Acceleration

Initialization

N_step / N_step_nn

NN Calc

N_step_nn

Stream Read pos, vel

Pair Potential

Stream Write

Propagator

Finalization

Note: Older results (July 2008) using FireStream 9170 and ATI Stream SDK v1.1
Molecular Dynamics: LAMMPS
Implementation Details

- Only pair potential calculation moved to GPGPU (~80% run time on CPU)
- Specifically: PairLJCharmmCoulLong::compute()
- Basic algorithm: “foreach atom-i calculate force from atom-j”
- Atom-i accessed in-order, atom-j accessed out-of-order
- Pairs defined by pre-calculated nearest-neighbor list (updated periodically)
- CPU efficiency achieved by using “half list” such that j > i
 - Eliminates redundant force calculations
- Cannot be done with GPU/Brook+ due to out-of-order writeback
- Must use “full list” on GPU (~2x penalty)
- LAMMPS neighbor list calculation modified to generate “full list”
Molecular Dynamics: LAMMPS
Implementation (More) Details

- **Host-side details:**
 - Pair potential compute function intercepted with call to special GPGPU function
 - Nearest-neighbor list re-packed and sent to board (only if new)
 - Position/charge/type arrays repacked into GPGPU format and sent to board
 - Per-particle kernel called
 - Force array read back and unpacked into LAMMPS format
 - Energies and virial accumulated on CPU (reduce kernel slower than CPU)

- **GPU per-atom kernel details:**
 - Used 2D arrays accept for neighbor list
 - Neighbor list used large 1D buffer(s) (no gain from use of 2D array)
 - Neighbor list padded modulo 8 (per-atom) to allow concurrent force updates
 - Calculated 4 force contributions per loop (no gain from 8)
 - Neighbor list larger than max stream (float4 <4194304>), broken up into 8 lists
 - Force update performed using 8 successive kernel invocations
Molecular Dynamics: LAMMPS

Benchmark Tests

- **General:**
 - Single-core performance benchmarks
 - GPGPU implementation single-precision
 - 32,000 atoms, 100 timesteps (standard LAMMPS benchmark)

- **Test #1: GPGPU**
 - Pair Potential calc on GPGPU, full neighbor list, newton=off, no Coulomb table

- **Test #2: CPU (“identical” algorithm, identical model)**
 - Pair Potential calc on CPU, full neighbor list, newton=off, no Coulomb table

- **Test #3: CPU (optimized algorithm, identical model)**
 - Pair Potential calc on CPU, half neighbor list, newton=off, no Coulomb table

- **Test #4: CPU (optimized algorithm, optimized model)**
 - Pair Potential calc on CPU, half neighbor list, newton=on, Coulomb table

- ASCI RED single-core performance (from LAMMPS website)
 - Most likely a Test #4, included here for reference
Molecular Dynamics: LAMMPS
Rhodopsin Benchmark

Amadahl’s Law: Pair Potential compared with total time: 35% (Test#1), 75% (Test#2), 83% (Test#4)
(Outline)

- Many-core processors
- Challenges: software (anyone surprised)
 - **Motivation**
 - Obvious benefit: performance
 - **Not so obvious benefit: mobile HPC**
 - OpenCL: problem solved, more problems
- Future Developments
100 TFLOPS, battlefield deployable, by 2012?

- What can be built today?
 - COTS solution: 2U+4U - 16 RV770 GPUs - 16 TFLOPS - 2.5 KW

- Future assumptions
 - Architecture: assume 3x performance increase
 - RV770 (55nm) - 800 cores - Today
 - RV870 (40nm) – 2000(?) cores – 2009
 - RV970 (32nm?) – 2400(?) cores - 2010
 - Design: assume 2x performance increase
 - Dual-GPU boards available now, dual-slot form factor
 - Dual-GPU boards, single-slot via lower power + liquid cooling
 - Power: assume power constrained 200W/per board(?)

- Result:
 - 96 TFLOPS - 3.2 KW ~2 cu. ft. (2U+4U) by 2011

- What will the software look like?

- Impact of deployable HPC for battlefield applications?
Battlefield Application: UWB SIRE RADAR

- Ultra Wide-Band Synchronous Impulse Reconstruction RADAR
 - Obstacle avoidance and concealed target detection
 - Under development by researchers at ARL/SEDD
 - Algorithms developed in MATLAB, being ported to C and GPUs
GPU Acceleration of SIRE Back Projection

Host code using ATI Stream Brook+ compiler

```c
float s_data<nas>;
float4 s_rx<na>;
float4 s_tx<na>;
float4 s_img<100,64>;

streamRead(s_data,data_all);
streamRead(s_rx,rx4);
streamRead(s_tx,tx4);

backprojection_gpu_kern(
    (float)na, (float)ns
    (float)nrange2,
    (float)nxrange2,
    yref, xr_inc, r_inc,
    r_start, rdr,
    coef1,coef2,coef3,
    s_rx, s_tx,
    s_data,s_img
);

streamWrite(s_img,img);
...
```
UWB SIRE RADAR Initial Benchmarks

Accumulated Back Projection Time (137 Frames)

- CPU baseline uses a single-core – opportunity for SSE and OpenMP optimization
- GPU implementations have opportunity for optimization as well
- Impact on real-time capability
 - C/Xeon E5450: total time 45.5 sec ⇒ 13 mph
 - ATI/Radeon HD 4870: total time ⇒ 34 mph
- Amdahl’s Law appears: relative cost of Back Projection 70% → 23%
 - Need to examine other parts of the overall algorithm
(Outline)

- Many-core processors
- Challenges: software (anyone surprised)
- Motivation
 - Obvious benefit: performance
 - Not so obvious benefit: mobile HPC
- OpenCL: problem solved, more problems
- Future Developments
OpenCL – What It Is, What It Is Not

- Industry standard for parallel programming of heterogeneous computing platforms
- Substance: OpenCL = CAL + CUDA + Brook + OpenGL buffer sharing
- Two parts:

 Platform and runtime API
 - Operating system moved into user-space
 - Good news, programmer has control over
 - Device discovery, registration, setup
 - Creating work queues
 - Memory consistency
 - Bad news, programmer has responsibility for ...

 Programming language
 - C extensions for device programming
 - Execution context is a kernel
 - Familiar with Brook/CUDA, no surprises

- OpenCL is NOT designed to make programming GPUs easier
- OpenCL is a very low-level standard designed to support platform independent software stack
Electromagnetics: 3D FDTD

- Direct iterative solution of Maxwell’s Equations
- Important for modeling electromagnetic radiation from small devices to large-scale radar applications
- Grid-based finite-differencing

\[
\frac{\partial H_i}{\partial t} = a \left(\frac{\partial E_j}{\partial x_k} - \frac{\partial E_k}{\partial x_j} \right)
\]

\[
\frac{\partial E_i}{\partial t} = b \left(\frac{\partial H_k}{\partial x_j} - \frac{\partial H_j}{\partial x_k} - \sigma E_i \right)
\]

- Implemented using AMD OpenCL CPU Beta
 - OpenCL implementation submitted for certification
OpenCL By Example (1)

```c
#include <CL/cl.h>

ctx = clCreateContextFromType(...);
clGetDeviceInfo(...);

cmdq = clCreateCommandQueue(...);

ee_buf = clCreateBuffer(...);
hh_buf = clCreateBuffer(...);

prg = clCreateProgramWithSource(...);
clBuildProgram(...);

cl_kernel hcomp_krn = clCreateKernel(...);
cl_kernel ecomp_krn = clCreateKernel(...);
```

- Device discovery, registration
- Create work queues
- Create buffers for data transfer
- Run-time/just-in-time (JIT) compilation
OpenCL By Example (2)

```c
for(step = 0; step < nstep; step += nburst) {
    clSetKernelArg(hcomp_krn,1,...);
    clSetKernelArg(hcomp_krn,2,...);
    ...

    for(burst = 0; burst < nburst; burst++) {
        clEnqueueNDRangeKernel(cmdq,hcomp_krn,...,&kev[2*burst]);
        clEnqueueNDRangeKernel(cmdq,ecomp_krn,...,&kev[2*burst+1]);
    }

    for(i=0;i<2*nburst;i++) clWaitForEvents(1,&kev[i]);
    clEnqueueReadBuffer(cmdq,ee_buf,...);
    clEnqueueReadBuffer(cmdq,hh_buf,...);
    clWaitForEvents(1,&ev[2]);
    clWaitForEvents(1,&ev[3]);
}
```

- **“Push” arguments**
- **Scheduler**
- **Wait**
- **Setup DMA**
__kernel void ecomp_kern(
 float t, float omega,
 uint nx, uint ny, uint nz, uint nb1, uint nt,
 float ax, float ay, float az,
 __global float* ee, __global float* hh,
 __local float* eblock, __local float* hblock
)
{
 uint gi000 = 4*nb*get_global_id(0);
 uint gj000 = 4*nb*get_global_id(1);
 uint gk000 = 4*nb*get_global_id(2);

 for(ijk=0; ijk<nb3; ijk++) {
 eblock[ci+EX] = ee[gci+EX];
 ...
 }

 barrier(CLK_LOCAL_MEM_FENCE);

 for(ijk=0; ijk<nb3; ijk++) {
 float ex000 = eblock[ci000+EX];
 float hy000 = hblock[ci000+HY];
 float hy001 = hblock[ci001+HY];
 ...
 ex000 += az * (hy001 - hy000) + ...
 float q = sin(t*omega);
 ez000 = (gi == 4)? q : ez000;
 ee[gci+EX] = ex000;
 ...
 }
}
(Outline)

- Many-core processors
- Challenges: software (anyone surprised)
- Motivation
 - Obvious benefit: performance
 - Not so obvious benefit: mobile HPC
- OpenCL: problem solved, more problems
- Future Developments
State of Compilers

- **icc_x86, gcc → icc_ia64 → clc → brcc, nvcc →**
 - **Mature** – performs miracles with emitted machine code, nearly perfect compilations
 - **Optimizing** – recognizes basic opportunities for optimization
 - **Quality** – sophisticated transformation from source to machine code, avoids doing dumb things
 - **Semantic** – handles any semantically correct language constructs thrown against it, emits correct machine code
 - **Functional** – reasonably reliable results, verbose messages when you ask too much, compiler knows what it cannot do
 - **Usable** – can be used with great care, sometimes actually works, easily confused, fails without warning or errors

- Many-core compiler technology well behind industry-standard CPUs (x86_64)
 - Trails lesser CPU compilers, e.g., Itanium
 - Reality: requires (at least) decade to build up complexity found in x86_64 compilers
 - Both vendors (Nvidia and ATI) offer relatively immature compilers
 - (I have personally broken both of them, source-level tests indicate they’re not optimizing)
 - Hardware makes effort worthwhile, no more difficult than SSE/OpenMP code opts
 - Compilers are improving rapidly, market forces ($$$) will drive advances
LLVM (UIUC)

• What is it: compiler technology
• Importance for many-core: supports many features critical to OpenCL
 • AMD OpenCL implementation based on LLVM
• Impact on compilation model (compilation is VERY cheap)
 • Current model is entrenched, pragmatic, but also archaic
 • Run-time/just-in-time (JIT) compilation
• Portable code changes from compile time to runtime issue
• This project has significant importance for future HPC
Building Upon OpenCL

- **stdcl**: POSIX-like extensions supporting OpenCL
 - Embed (static link) CL code into ELF objects
 - Initialize the most common use case by default
 - Pre-load and compile CL kernels for identified devices
 - `stdcpu[0]`, `stdcpu[1]`, ... `stdgpu[0]`, `stdgpu[2]`, ...
 - Add additional convenience functions in spirit of `stdio`, `stdlib`
 - Support dynamic/shared CL similar to dynamic libraries
 - `clopen()`, `clsym()`, `clclose()`
 - No interference with direct OpenCL support
- **coprthr**: pthreads extensions for co-processing
- Integrate OpenCL with existing, proven APIs, e.g., OpenMP
 - OpenMP fork-join model represents typical many-core use case
- Other ideas?
- OpenCL is foundation, expect open-source community to build software stack
Conclusions

- Many-core creates an inversion of HPC parallelism
- Many challenges, mostly confronted by software developer
- OpenCL may provide a **foundation** for programming model
- Much will depend on vendor delivery of good compilers and runtime implementations
- Introduces new concepts of compilation and portability
- Reconciling OpenCL software stack within HPC?